Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (203)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38345245

RESUMO

Reconstituted cytoskeleton composites have emerged as a valuable model system for studying non-equilibrium soft matter. The faithful capture of the dynamics of these 3D, dense networks calls for optical sectioning, which is often associated with fluorescence confocal microscopes. However, recent developments in light-sheet fluorescence microscopy (LSFM) have established it as a cost-effective and, at times, superior alternative. To make LSFM accessible to cytoskeleton researchers less familiar with optics, we present a step-by-step beginner's guide to building a versatile light-sheet fluorescence microscope from off-the-shelf components. To enable sample mounting with traditional slide samples, this LSFM follows the single-objective light-sheet (SOLS) design, which utilizes a single objective for both the excitation and emission collection. We describe the function of each component of the SOLS in sufficient detail to allow readers to modify the instrumentation and design it to fit their specific needs. Finally, we demonstrate the use of this custom SOLS instrument by visualizing asters in kinesin-driven microtubule networks.


Assuntos
Citoesqueleto , Microtúbulos , Microscopia de Fluorescência
2.
Front Phys ; 102022.
Artigo em Inglês | MEDLINE | ID: mdl-37547053

RESUMO

The cytoskeleton-a composite network of biopolymers, molecular motors, and associated binding proteins-is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties-ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems-remains challenging. Here, we combine light sheet microscopy with differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly, while higher actomyosin content increases the range of timescales over which transport is superdiffusive, it also markedly increases the degree of subdiffusion at short timescales and generally slows transport. Corresponding displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero modes, indicative of directed advection coupled with caged diffusion and hopping. At larger spatiotemporal scales, particles in active composites exhibit superdiffusive dynamics with scaling exponents that are robust to changing actomyosin fractions, in contrast to normal, yet faster, diffusion in networks without actomyosin. Our specific results shed important new light on the interplay between non-equilibrium processes, crowding and heterogeneity in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter systems to elucidate transport and dynamics across scales.

3.
J Vis Exp ; (170)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33970126

RESUMO

Stentor coeruleus is a well-known model organism for the study of unicellular regeneration. Transcriptomic analysis of individual cells revealed hundreds of genes-many not associated with the oral apparatus (OA)-that are differentially regulated in phases throughout the regeneration process. It was hypothesized that this systemic reorganization and mobilization of cellular resources towards growth of a new OA will lead to observable changes in movement and behavior corresponding in time to the phases of differential gene expression. However, the morphological complexity of S. coeruleus necessitated the development of an assay to capture the statistics and timescale. A custom script was used to track cells in short videos, and statistics were compiled over a large population (N ~100). Upon loss of the OA, S. coeruleus initially loses the ability for directed motion; then starting at ~4 h, it exhibits a significant drop in speed until ~8 h. This assay provides a useful tool for the screening of motility phenotypes and can be adapted for the investigation of other organisms.


Assuntos
Rastreamento de Células/normas , Regeneração/genética , Animais
4.
ACS Macro Lett ; 10(9): 1151-1158, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35549081

RESUMO

The composite cytoskeleton, comprising interacting networks of semiflexible actin and rigid microtubules, generates forces and restructures by using motor proteins such as myosins to enable key processes including cell motility and mitosis. Yet, how motor-driven activity alters the mechanics of cytoskeleton composites remains an open challenge. Here, we perform optical tweezers microrheology and confocal imaging of composites with varying actin-tubulin molar percentages (25-75, 50-50, and 75-25), driven by light-activated myosin II motors, to show that motor activity increases the elastic plateau modulus by over 2 orders of magnitude by active restructuring of both actin and microtubules that persists for hours after motor activation has ceased. Nonlinear microrheology measurements show that motor-driven restructuring increases the force response and stiffness and suppresses actin bending. The 50-50 composite exhibits the most dramatic mechanical response to motor activity due to the synergistic effects of added stiffness from the microtubules and sufficient motor substrate for pronounced activity.


Assuntos
Actinas , Citoesqueleto , Actinas/metabolismo , Citoesqueleto/metabolismo , Elasticidade , Microtúbulos/metabolismo , Miosinas/metabolismo
5.
Philos Trans R Soc Lond B Biol Sci ; 375(1792): 20190167, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31884915

RESUMO

The phenomenon of ciliary coordination has garnered increasing attention in recent decades and multiple theories have been proposed to explain its occurrence in different biological systems. While hydrodynamic interactions are thought to dictate the large-scale coordinated activity of epithelial cilia for fluid transport, it is rather basal coupling that accounts for synchronous swimming gaits in model microeukaryotes such as Chlamydomonas. Unicellular ciliates present a fascinating yet understudied context in which coordination is found to persist in ciliary arrays positioned across millimetre scales on the same cell. Here, we focus on the ciliate Stentor coeruleus, chosen for its large size, complex ciliary organization, and capacity for cellular regeneration. These large protists exhibit ciliary differentiation between cortical rows of short body cilia used for swimming, and an anterior ring of longer, fused cilia called the membranellar band (MB). The oral cilia in the MB beat metachronously to produce strong feeding currents. Remarkably, upon injury, the MB can be shed and regenerated de novo. Here, we follow and track this developmental sequence in its entirety to elucidate the emergence of coordinated ciliary beating: from band formation, elongation, curling and final migration towards the cell anterior. We reveal a complex interplay between hydrodynamics and ciliary restructuring in Stentor, and highlight for the first time the importance of a ring-like topology for achieving long-range metachronism in ciliated structures. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.


Assuntos
Cílios/fisiologia , Cilióforos/fisiologia , Regeneração , Cilióforos/crescimento & desenvolvimento
6.
J Phys Chem C Nanomater Interfaces ; 122(30): 17406-17412, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31656549

RESUMO

Quantum dots are fluorescent nanoparticles with narrow-band, size-tunable, and long-lasting emission. Typical formulations used for imaging proteins in cells are hydrodynamically much larger than the protein targets, so it is critical to assess the impact of steric effects deriving from hydrodynamic size. This report analyzes a new class of quantum dots that have been engineered for minimized size specifically for imaging receptors in narrow synaptic junctions between neurons. We use fluorescence correlation spectroscopy and transmission electron microscopy to calculate the contributions of the crystalline core, organic coating, and targeting proteins (streptavidin) to the total hydrodynamic diameter of the probe, using a wide range of core materials with emission spanning 545-705 nm. We find the contributing thickness of standard commercial amphiphilic polymers to be ~8 to ~14 nm, whereas coatings based on the compact ligand HS-(CH2)11 - (OCH2CH2)4-OH contribute ~6 to ~9 nm, reducing the diameter by ~2 to ~5 nm, depending on core size. When the number of streptavidins for protein targeting is minimized, the total diameter can be further reduced by ~5 to ~11 nm, yielding a diameter of 13.8-18.4 nm. These findings explain why access to the narrow synapse derive primarily from the protein functionalization of commercial variants, rather than the organic coating layers. They also explain why those quantum dots with size around 14 nm with only a few streptavidins can access narrow cellular structures for neuronal labeling, whereas those >27 nm and a large number of streptavidins, cannot.

7.
J Vis Exp ; (91): 51774, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25286081

RESUMO

Fluorescence imaging with one-nanometer accuracy (FIONA) is a simple but useful technique for localizing single fluorophores with nanometer precision in the x-y plane. Here a summary of the FIONA technique is reported and examples of research that have been performed using FIONA are briefly described. First, how to set up the required equipment for FIONA experiments, i.e., a total internal reflection fluorescence microscopy (TIRFM), with details on aligning the optics, is described. Then how to carry out a simple FIONA experiment on localizing immobilized Cy3-DNA single molecules using appropriate protocols, followed by the use of FIONA to measure the 36 nm step size of a single truncated myosin Va motor labeled with a quantum dot, is illustrated. Lastly, recent effort to extend the application of FIONA to thick samples is reported. It is shown that, using a water immersion objective and quantum dots soaked deep in sol-gels and rabbit eye corneas (>200 µm), localization precision of 2-3 nm can be achieved.


Assuntos
Microscopia de Fluorescência/métodos , Animais , Carbocianinas/química , Córnea/química , DNA/química , Ácidos Nucleicos Imobilizados/química , Transição de Fase , Pontos Quânticos , Coelhos
8.
J Biol Chem ; 288(45): 32612-32621, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24072715

RESUMO

Disruptions in microtubule motor transport are associated with a variety of neurodegenerative diseases. Post-translational modification of the cargo-binding domain of the light and heavy chains of kinesin has been shown to regulate transport, but less is known about how modifications of the motor domain affect transport. Here we report on the effects of phosphorylation of a mammalian kinesin motor domain by the kinase JNK3 at a conserved serine residue (Ser-175 in the B isoform and Ser-176 in the A and C isoforms). Phosphorylation of this residue has been implicated in Huntington disease, but the mechanism by which Ser-175 phosphorylation affects transport is unclear. The ATPase, microtubule-binding affinity, and processivity are unchanged between a phosphomimetic S175D and a nonphosphorylatable S175A construct. However, we find that application of force differentiates between the two. Placement of negative charge at Ser-175, through phosphorylation or mutation, leads to a lower stall force and decreased velocity under a load of 1 piconewton or greater. Sedimentation velocity experiments also show that addition of a negative charge at Ser-175 favors the autoinhibited conformation of kinesin. These observations imply that when cargo is transported by both dynein and phosphorylated kinesin, a common occurrence in the cell, there may be a bias that favors motion toward the minus-end of microtubules. Such bias could be used to tune transport in healthy cells when properly regulated but contribute to a disease state when misregulated.


Assuntos
Cinesinas/química , Substituição de Aminoácidos , Animais , Bovinos , Dineínas/química , Dineínas/genética , Dineínas/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteína Quinase 10 Ativada por Mitógeno/química , Proteína Quinase 10 Ativada por Mitógeno/genética , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Mutação de Sentido Incorreto , Fosforilação/genética , Estrutura Terciária de Proteína , Transporte Proteico/genética , Células Sf9 , Spodoptera
9.
J Vis Exp ; (82): e50848, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24378633

RESUMO

Although wound-healing is often addressed at the level of whole tissues, in many cases individual cells are able to heal wounds within themselves, repairing broken cell membrane before the cellular contents leak out. The giant unicellular organism Stentor coeruleus, in which cells can be more than one millimeter in size, have been a classical model organism for studying wound healing in single cells. Stentor cells can be cut in half without loss of viability, and can even be cut and grafted together. But this high tolerance to cutting raises the question of why the cytoplasm does not simply flow out from the size of the cut. Here we present a method for cutting Stentor cells while simultaneously imaging the movement of cytoplasm in the vicinity of the cut at high spatial and temporal resolution. The key to our method is to use a "double decker" microscope configuration in which the surgery is performed under a dissecting microscope focused on a chamber that is simultaneously viewed from below at high resolution using an inverted microscope with a high NA lens. This setup allows a high level of control over the surgical procedure while still permitting high resolution tracking of cytoplasm.


Assuntos
Cilióforos/fisiologia , Citoplasma/fisiologia , Análise de Célula Única/métodos , Cicatrização/fisiologia , Animais , Células Cultivadas , Microscopia/instrumentação , Microscopia/métodos , Regeneração/fisiologia
10.
Methods Mol Biol ; 778: 33-56, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21809199

RESUMO

Traditional microscopy techniques are limited by the wave-like characteristics of light, which dictate that about 250 nm (or roughly half the wavelength of the light) is the smallest distance by which two identical objects can be separated while still being able to distinguish between them. Since most biological molecules are much smaller than this limit, traditional light microscopes are generally not sufficient for single-molecule biological studies. Fluorescence Imaging with One Nanometer Accuracy (FIONA) is a technique that makes possible localization of an object to approximately one nanometer. The FIONA technique is simple in concept; it is built upon the idea that, if enough photons are collected, one can find the exact center of a fluorophore's emission to within a single nanometer and track its motion with a very high level of precision. The center can be localized to approximately (λ/2)/Ö-N, where λ is the wavelength of the light and N is the number of photons collected. When N = 10,000, FIONA achieves an accuracy of 1-2 nm, assuming the background is sufficiently low. FIONA, thus, works best with the use of high-quality dyes and fluorescence stabilization buffers, sensitive detection methods, and special microscopy techniques to reduce background fluorescence. FIONA is particularly well suited to the study of molecular motors, which are enzymes that couple ATP hydrolysis to conformational change and motion. In this chapter, we discuss the practical application of FIONA to molecular motors or other enzymes in biological systems.


Assuntos
Microscopia de Fluorescência/métodos , Proteínas Motores Moleculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...